Covariance Matrix Estimation From Linearly-Correlated Gaussian Samples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Gaussian Covariance Matrix Estimation With Markov Structures

Covariance matrix estimation for a large number of Gaussian random variables is a challenging yet increasingly common problem. A fact neglected in practice is that the random variables are frequently observed with certain temporal or spatial structures. Such a problem arises naturally in many practical situations with time series and images as the most popular and important examples. Effectivel...

متن کامل

Linear-Time Inverse Covariance Matrix Estimation in Gaussian Processes

The computational cost of Gaussian process regression grows cubically with respect to the number of variables due to the inversion of the covariance matrix, which is impractical for data sets with more than a few thousand nodes. Furthermore, Gaussian processes lack the ability to represent conditional independence assertions between variables. We describe iterative proportional scaling for dire...

متن کامل

Estimation of Covariance Matrix

Estimation of population covariance matrices from samples of multivariate data is important. (1) Estimation of principle components and eigenvalues. (2) Construction of linear discriminant functions. (3) Establishing independence and conditional independence. (4) Setting confidence intervals on linear functions. Suppose we observed p dimensional multivariate samples X1, X2, · · · , Xn i.i.d. wi...

متن کامل

Flexible Covariance Estimation in Graphical Gaussian Models

In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the WPG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278–1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The WPG family includes the classical inverse of t...

متن کامل

Locally Weighted Full Covariance Gaussian Density Estimation

We describe an interesting application of the principle of local learning to density estimation. Locally weighted fitting of a Gaussian with a regularized full covariance matrix yields a density estimator which displays improved behavior in the case where much of the probability mass is concentrated along a low dimensional manifold. While the proposed estimator is not guaranteed to integrate to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2019

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2019.2903019